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ABSTRACT 

This work seeks to increase the expected intelligence value collected by 

optimizing the time on multiple tasks. The purpose of this thesis is to provide a 

quantifiable process to determine how much time should be allocated to each task sharing 

the same asset. 

This optimized expected time allocation is calculated by numerical analysis and 

Monte Carlo simulation. Numerical analysis determines the expectation by involving an 

integral and a joint probability density function for a range of rates. In this case, rates are 

the historical hailing by taxi passengers. Monte Carlo simulation determines the optimum 

time allocation of the asset by repeatedly running experiments to approximate the 

expectation of the random variables. This was deemed necessary to account for real-

world uncertainties as applied to a taxi scenario. The taxi variables consist of hail rates of 

the passengers, the fare amount for the task, and how much time to pursue said fare. 

Accounting for the uncertainty in the hail rates was exhibited by using ranges and not 

given values. The relationship the rates of hails for the taxi from two passengers and the 

fare values gathered is important to utilizing the taxi to maximize the total fare collected. 
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I. INTRODUCTION  

Americans entrust the government to manage their hard-earned tax dollars 

effectively. In this difficult economic climate, matters of financial efficiency deserve 

even greater attention. For example, UPS is deploying an on-road integrated optimization 

navigation (ORION) system to “select the most efficient route while meeting customer 

requirements” [1]. The ORION system is predicted to reduce fuel cost, vehicle 

maintenance cost, and CO2 emissions. Optimization tools, such as ORION, allow 

decision makers to use existing systems more efficiently, resulting in cost savings by 

requiring fewer assets to meet customer demands. Furthermore, these tools often allow 

the collection of data that otherwise would have been neglected. This efficiency in time 

allocation is important to decision makers, mission planners, and operators because it 

may increase the overall value of the intelligence that is gathered. Optimizing the use of 

our national assets ensures due diligence on behalf of the taxpayers, more intelligence 

value for the money spent by the U.S. government, and the possibility of collecting more 

data to make informed decisions. 

A. MOTIVATION 

If multiple tasks require a common government resource, what is the optimal way 

to allocate the time spent on that resource? Decision makers need a scientific and 

quantifiable process to determine the best way to allocate resources for an asset’s tasks. 

In this thesis, we examine a method for using limited resources to their maximum 

intelligence-gathering potential. This quantitative process is a tool that allows decision 

makers to be aware of the effect their decisions may have on the amount of intelligence 

gathered by the resource. The approach seeks to increase the expected intelligence value 

collected by an asset—not by tapping its existing potential nor making changes to its 

structure,—but instead by improving the tasking for that resource. More effective time 

allocation and planning may assist in realizing maximum expected potential and 

increasing the quality of service. This research may result in further consideration of the 

relationship between time allocation and the overall capacity of the resource. The purpose 
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of this research is to provide information on the use of limited national assets to increase 

the overall intelligence value gathered. 

B. UNIQUE FOCUS OF THIS THESIS 

With random variables, this thesis will use an expected estimate of intelligence 

gathered to optimize the efficiency of very expensive, limited national assets. It is 

important to find the optimal time for a resource to accomplish each of its tasks. The 

more efficient use of the resource; the more valuable the intelligence gathered. 

Numerical analysis and computer simulation of select random variables provide a 

method of determining how to use limited national assets to maximize time optimization. 

This research focuses on one type of limited asset, which is discussed in classified 

Appendix A. However, for the purpose of this thesis, I used a hypothetical unclassified 

example of a taxi with two tasks. 

This approach assigns cab fares to one taxi, which must pick up two separate 

passengers to complete its mission. The taxi is considered the limited resource, and the 

taxi scenario is affected by how much fare is charged (i.e., the fare value, and how much 

time is allotted to picking up the passengers). The research focus is on optimizing the 

division of a fixed total time into the time to find Passenger One and the time to find 

Passenger Two, with respect to the average rates of finding Passenger One and Passenger 

Two. Each rate is defined as how fast or slow the taxi is estimated to be hailed by a 

passenger, measured in hails per hour, or simply per hour. Each rate is independent of the 

other. For example, based on historical data, Passenger One may be predicted to take a 

long time to hail a cab. Each passenger represents a task of the taxi. The question 

becomes, “What time should be allocated to pick-up Passenger One and Passenger Two 

to maximize the total expected fare?” The goal of this research is to optimize the time 

spent on collecting each of the two passengers jointly, thereby maximizing the expected 

total fare collected, measured in dollars. In the scenario of a taxi picking up Passenger 

One, optimization of time allocation affects the ability of the taxi to accomplish Task 

Two (See Figure 1). This thesis examines time optimization given the pair of joint tasks, 

conditional fare values, and the average rates of each task. 
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Figure 1.  Visual representation of a limited resource, the taxi, with multiple 

tasking. 

Adapted from [2]: “Map,” n.d. Google [Online]. Available at: http://images.google.com/. 

[Accessed: 29-Jan-2016]. and [3] taxi image “Taxi,” Dreamstime. [Online]. Available at: 

http://www.dreamstime.com/royalty-free-stock-images-cartoon-yellow-taxi-car-

image21652969 

C. LITERATURE REVIEW 

Other scholars have written about the same concepts that are discussed throughout 

this thesis, providing a foundation for the methods used here. This section is divided into 

information found in introductory statistics textbooks and previous theses that apply these 

statistical concepts. The introductory section examines random variables and key 

probability approaches. The previous theses section discusses algorithms to improve the 

usage of assets. 

1. Statistical Concepts

Random variables measure chance events associated with a sample space and can 

be defined as a numerically valued function over a sample space [4]. Continuous random 

variables are critical to this investigation. In the taxi analogy, we may model the rate to 

find each passenger as a random variable with perhaps infinitely many possible rates to 

collect Passenger One and Passenger Two. Modeling these rates as random variables 

makes sense if we do not know these rates precisely. These random variables and how 

http://www.dreamstime.com/royalty-free-stock-images-cartoon-yellow-taxi-car-image21652969
http://www.dreamstime.com/royalty-free-stock-images-cartoon-yellow-taxi-car-image21652969
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they impact the optimum taxi allocation can be analyzed using well-established analytical 

statistical methods. These methods allow the calculation of theoretical probabilities and 

averages using calculus and algebra. The act of collecting, analyzing, interpreting, and 

drawing conclusions about the numerical data is called statistics [5]. 

Another approach used in this research is correlating probabilities to real-world 

events with relative frequency [5]. Relative frequency involves a large number of trials to 

reveal the probability of an event and the relative frequency of its occurrence [5]. Testing 

an experiment a large number of times under identical environmental conditions creates 

an empirical probability [6]. There may be a difference between empirical probability and 

theoretical probability. However, if the experiment is run a very large number of times, 

the empirical probability, and theoretical probability will be approximately the same. 

According to the Law of Large Numbers [5], the difference between the empirical 

probability and the theoretical probability can be made arbitrarily small by increasing the 

number of trials. In this research, computers were used to run a large numbers of trials. 

Empirical probability is limited by the fact that the results are hypothetical and that 

careful consideration is needed when pinpointing the number of trials [6]. Details of these 

simulation concepts are discussed in Chapter II. 

2. Application of Statistical Concepts

Previous work provides the background needed to understand the stakes and the 

application of the optimization of national assets. For example, in Dynamic Scan 

Schedules, Dutertre [7] maximized the quality of service metric for scheduling equipment 

usage on airplanes, specifically emitter finders. Dutertre applied an algorithm to improve 

asset usage and improving asset usage in a dynamic environment is the focus of this 

thesis. Moreover, this thesis builds on work by Chris M. Duke [8] and Kenneth 

St. Germain [9], with a particular emphasis on St. Germain’s time optimization equation 

for the time allocation between two tasks time-sharing the same asset. 

An article by Dutertre [7] shows how an algorithm with guaranteed detection 

probabilities was applied to enhance the scan schedules for airplanes. He did this to find 

the optimal schedule to optimize the quality-of-service metric. Dutertre declares his 
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“improvements were demonstrated via simulation, but the basic techniques can be 

extended and generalized for even better performance” of the scanners. His algorithm 

makes the schedule for the signal emission scanning in real time and improves the 

detection of the signal of interest performance as search preferences adjust 

Duke examined how our nation currently tasks limited resources in his masters’ 

thesis Optimizing the Signals Intelligence Tasking Process [8]. Duke visited 

organizations and studied how those organizations tasked their limited resources. 

Building on Duke’s thesis, St. Germain presented a quantifiable optimization 

methodology and a metric that can be used to enhance the efficiency of intelligence 

collecting for national resources [9]. His effort to calculate the average intelligence was 

determined by the probability of collection using assumed deterministic constants for 

conditional intelligence value and rates of collections using Equations (1.1) and (1.2). 

The key result of St. Germain’s thesis is  

 

1

0 if 0

if 0

if

Total

Total Total

T

T T T T

T T T




  
   (1.1) 
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2 2

1 2
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T

R R

  
  

  


 (1.2) 

which is derived in Appendix B and where 1I  is the conditional intelligence value of 

Task One or the conditional fare charged for Passenger One. 2I  is the conditional fare 

charged for Passenger Two. 1R  is the average rate of collection for Task One or the rate 

at which the taxi is hailed by Passenger One. 2R  is the rate at which the taxi is hailed by 

Passenger Two. The variables totalT  is the total time allotted for the resource to attempt 

both tasks, and 1T  is the expected optimum time spent pursuing Passenger One. 

Using Equations (1.1) and (1.2), the resource management team of mission 

planners and operators could make an informed decision with regard to resource 

allocation and expected intelligence value gained or lost, thereby increasing, on average, 
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the intelligence gathered by assets. In St. Germain’s thesis [9], the optimum time was the 

only random variable assigned to a resource to accomplish multiple taskings from the 

perspective of a mission planner at a specific mission control station. 

This research will re-analyze the optimum time problem with use of random 

variables for the average rates of collection, 1R  and 2R , and the conditional intelligence 

values, 1I  and 2I , to accomplish multiple tasks. In previous work by Duke [8] and 

St. Germain [9], they used constant values for the rates of collection and conditional 

intelligence. One can apply historical data to determine an approximate average of 

collection rates for various signals of interest in specified geographical areas at specified 

times of the day and year. The same historical data can create approximate histograms, or 

effectively probability density functions, for the collection rates. Since we have a finite 

amount of historical data, we do not know the precise value for average rate of collection, 

so it would be more accurate to treat the average rates of collection, 1R  and 2R , as 

random variables, where the range of the random variables includes all the values of 

average collection deemed likely, according to the historical data. The optimum time 

allotted will be calculated both via numerical analysis and separately by Monte Carlo 

simulation. If these two methods yield the same results, we can have high confidence that 

the results are correct. 

This work accounts for the uncertainty and variabilities in average collection rates 

by treating St. Germain’s result (Equations (1.1) and (1.2)) as a conditional expected 

value of the optimum time allocated to Task One conditioned on the average rates of 

collection. Then this work calculates the expected value of the optimum time allotted by 

removing the conditions on average rates of collection, i.e., by averaging over the joint 

distribution for the two average collection rates. Thus, this thesis generates estimates for 

optimized allotted time that is not sensitive to assumed values for the average rates of 

collection. 
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D. OVERVIEW 

The remainder of this thesis if organized as follows: Chapter II examines 

mathematical concepts that must be understood to comprehend methods in later chapters 

and the value of the results. Chapter III illustrates how two methods—numerical analysis 

and Monte Carlo simulation use Equations (1.1) and (1.2) to come to the same expected 

optimum time and why two approaches are desired for this research. Chapter IV reviews 

the findings and behaviors of the numerical analysis and Monte Carlo simulation, and 

Chapter V discusses conclusions and suggests further work. 
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II. FUNDAMENTAL STATISTICAL CONCEPTS 

This chapter explains key mathematical computations used in this study. The 

chapter begins with basic concepts in statistics used to manipulate Equations (1.1) and 

(1.2). These manipulations will be applied in Chapter III. Fundamental concepts of 

statistics and probability that are necessary for understanding this thesis fall into three 

categories: distribution functions, expectation, and random variable types. These 

distributions include the cumulative distribution function, probability distribution 

function, expectation, Poisson distribution, uniform distribution, and exponential 

distribution. The distribution functions allow Equations (1.1) and (1.2) to be applied 

differently from previous works. The distributions affect the possible random variable 

sample sets to be used as conditional rates and as conditional intelligence values. 

A. DISTRIBUTION FUNCTIONS 

This section explains how Equations (1.1) and (1.2) can be manipulated and used 

in various ways when compared to the previous works of Duke [8] and St. Germain [9]. 

First, the cumulative distribution function (CDF) involves probability and random 

variables in one simple equation. The derivative of the CDF produces a probability 

density function (PDF). 

The CDF is defined mathematically as 

 
  Pr( )XF x X x 

 (2.1) 

where X  is a random variable and x is any possible value of X  [6]. The CDF is a 

method of describing how the possible values of the random variables are distributed and 

can be applied to random variables of any type [6]. A CDF for a discrete random variable 

consists of a number of discontinuous steps, whereas a CDF for a continuous random 

variable is like the graphs shown in Figure 2, which are monotonically increasing [6]. 

Monotonically increasing simply means that the function never has a negative 

derivative [6]. The CDF of a uniform random variable is linear, as shown in Figure 2 [6]. 
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The maximum value of the CDF is one, lim ( ) 1X
x

F x


 ; this knowledge can be used to 

eliminate variables in Equation (1.2) [6]. 

 

 
 

Figure 2.  Cumulative distribution function for a uniform random variable [10]. 

 Source: [10] R. C. Larson and A. Odoni, “2.10 Probability Density Functions,” [Online]. 

Available at: http://web.mit.edu/urban_or_book/www/book/chapter2/2.10.html.  

 

The CDF is always monotonically increasing, which means 

   2 1 21  if and only if X X xF xx F x   [6]. A simple example to illustrate this point is the 

probability that a freezer’s temperature is less than or equal to negative four degrees, i.e.,

( 4 ) Pr( 4 ) 1/ 3YF Y     , and the probability that the freezer’s temperature is less 

than or equal to negative five degrees, i.e., ( 5 ) Pr( 5 ) 1/ 2YF Y     . Notice that this 

is impossible because the probability that the temperature is less than 4  cannot be less 

than the probability that the temperature is less than 5 , i.e., 

Pr{ 4 } Pr{ 5 } +Pr{ 5 4 }Y Y Y          Pr{ 5 }Y   . This example would be 

graphed with a negative slope, violating the rule of being monotonically increasing and 

demonstrating that for a CDF, a negative slope is impossible [6]. Joint CDFs must also be 

discussed due to the number of variables in Equations (1.1) and (1.2). Instead of ( )XF x , a 

joint CDF is written as , ( , ) Pr( ,  ND )X YF x y X x A Y y    [6]. It is also important to 

understand the relationship between the CDF and PDF. 
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The PDF is the derivative of the CDF; mathematically defined as [6] 

 
   ( )  ' ( ).X X X X

d
x F x of fr x F x

dx
 

 (2.2) 

This relationship can be inverted so that the CDF can be calculated by using the 

area under the PDF, in other words, 

 

    .

x

X XF x f d 


 
  (2.3) 

For the purposes of this thesis, it is further necessary to understand the conditional 

PDF with an emphasis on two random variables, 1R  and 2R . The word conditional 

implies additional limitations or restrictions on the set of probabilities [6]. For example, 

how often would someone see a hummingbird?  A conditional factor could be restricting 

the time duration to nighttime. Another important aspect of a PDF is the joint probability 

density function [4], that is  

 
, ,( , ) ( , )A B A Bf a b F a b

a b

 

   (2.4) 

which is used later in this chapter to find the expectation of joint variables. To review, the 

joint CDF of A  and B  is [5] 

 
 , ( , ) Pr   A BF a b A a AND B b  

, (2.5) 

and the joint PDF of A  and B  is Equation (2.4). 

 

B. EXPECTATION 

This section explains the expectation concept and how it will be used in Chapter 

III. The key point to remember is that the expectation is also the average. We can 

calculate the expected value using numerical analysis. Equations (1.1) and (1.2) will 

result in 1T  values that are averaged to calculate the expected optimum time. Another 

approach to determining the expectation is to use Monte Carlo simulation. Monte Carlo 

simulation is a theoretical approach used to determine the approximate expectation or 

average by repeating the experiment many, many times in the exact same environment 

[11]. 
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The expectation is the mean or average, in this case, of the optimum time [4]. The 

mathematical process for calculating an average is different for discrete random variables 

and continuous random variables [6]. The mean of a continuous random variable, X  will 

be examined. The expectation for a continuous random variable is the integral of the 

weighted averages times the values of the random variable. The PDF is essential because 

it is the weight applied to get the weighted average. The expectation of random variable 

Y  is mathematically defined as

the the weights
values
being
averaged

( ) ( ( ) )YE Y y f y dy





   [6]. The average must be 

integrated with respect to the random variables. For a function of two joint continuous 

random variables, the average of the function ( , )h A B  is 

( ( , )) ( , ) ( , )ABE h A B h a b f a b dadb

 

 

    [6], where ABf  is the joint probability density 

function of A  and B . If the two random variables are independent, this simplifies to  

 

( ( , )) ( , ) ( ) ( )A BE h A B h a b f a daf b db

 

 

  
 (2.6) 

where Af and Bf  are the probability density functions for A  and B , respectively [6]. 

Equation (2.6) will be seen later in Chapter III. 

A further detail regarding dependent and independent variables must be 

emphasized. For two random variables to be called independent random variables, then 

the statistics of each random variable are the same whether or not the value of the other 

random variable is known. In this research, 1R  and 2R  are independent random variables 

and therefore have no effect on each other. 

C. DISTRIBUTIONS 

This section examines different distributions including Poisson and uniform. 

St. Germain’s previous work explored Poisson’s distribution that was used to derive 

Equations (1.1) and (1.2) [9] as seen in Appendix B. However, this study examined 

uniform distributions, as seen in Chapter III. 
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Previous work analyzed the probability of a number of discrete random events 

occurring in a fixed interval of time, modeled as a Poisson random variable [9]. The 

Poisson distribution applies when the time of each event is random with a constant 

average occurrence rate [9]. For example, the number of fares a taxi cab driver can 

collect in a specific number of hours could be modeled as a Poisson random variable. The 

probability mass function of a Poisson process is given by 

 if 0,1,2,3,4...
( ) Pr( ) !

0         otherwise

xe
x

p x X x x

 
 

    
 
 

 [9] where X  is the random variable, x  is 

the possible values of X , e  is the base of the natural logarithm ( e =2.71828 …), and   

is the average number of events over the given time interval, T . Additionally, for 

RT  , R  is the average rate of the taxi being hailed by passengers successfully per unit 

of time. The variable of rates is NOT based on the speed of the taxi. The probability mass 

distribution function must sum to one, i.e., 
0 0

Pr( ) 1
!

x

x x

e
X x

x

 

 

     [9]. 

A uniform random variable is one that is equally likely to take on any value 

between two numbers. The ability to replicate real-world events by preventing bias from 

being introduced into the calculations gives creditability to this research. An example of a 

continuous uniform distribution applied to the previously mentioned taxi scenario is 

when the rate of taxi hailing is assumed to be unknown, but equally likely to be any value 

between one fare per hour and two fares per hour. 

D. OVERVIEW 

This chapter explained key concepts to include the definition of a CDF and how it 

can be transformed into a PDF. The CDF and the PDF must be applied to joint events, 

and a slight modification to the original forms of the CDF and PDF occurs when 

considering multiple joint events. This chapter also discusses the concept of and formula 

for the expectation so that its use in later chapters can be readily understood. Moreover, 

various random variable distributions are included because they are used in later chapters 

in this work. 
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III. METHODOLOGY 

Based on introductory statistics concepts reviewed in Chapter II, this chapter 

discusses the manipulations of Equations (1.1) and (1.2) to find the optimum time 

allocation. The numerical analysis method uses the double integral of Equation (2.6) and 

a uniform distribution for random variables to find a value for the optimum time 

allocation of the asset. The Monte Carlo simulation method uses the relative frequency 

concept to determine the optimum time allocation of the asset by repeatedly running 

random experiments to approximate the expectation of the random variable 1T  in order to 

verify that the numerical analysis results are accurate. In this case, the Monte Carlo 

simulation results confirm the numerical analysis results. When numerical analysis and 

Monte Carlo simulation are applied to Equations (1.1) and (1.2), the findings are 

statistically identical and thus will be referred to as 1( )E T  for the rest of this thesis. 

Results for 1( )E T  are discussed in Chapter IV. 

The two methods are required to replicate real-world uncertainty in Equations 

(1.1) and (1.2). This research is attempting to account for the unanticipated circumstances 

of real-life operations when finding the expected optimum 1T . This objective is achieved 

by removing conditions via numerical analysis, by applying relative frequency in Monte 

Carlo simulation, and by comparing the two methods’ results. Uncertainty must be 

accounted for with probability distributions and computational simulations to improve the 

accuracy of these results [12]. The two methods provide verification because if the two 

diverse methods yield the same answer, then both methods are likely correct; the answer, 

the expected optimum time to collect Passenger One, therefore is also correct. 

A. NUMERICAL ANALYSIS 

This section will illustrate how numerical analysis uses Equations (1.1) and (1.2) 

to find the expected optimum time allocation for the asset. Due to our assumed 

uncertainty in the rates, it is necessary to remove the conditions on the rates to use 

Equations (1.1) and (1.2) to find a value for the average optimum time. 
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This method builds on previous work [9], where the variables 1R , 2R , 1I , 2I , and 

totalT  were considered deterministic constants that were used to determine an 

unconditional optimum 1T . However, this study considers 1R  and 2R  as random 

variables, to account for real-world uncertainties. The introduction of random variables 

transforms Equations (1.1) and (1.2) into formulas that can calculate the conditional 

optimum time to be invested in Task One. We will use Equations (1.1) and (1.2), restated 

here, as the conditional expectation where the condition is that 1R  and 2R  are known 

 

 1

0 if 0

if 0

if

Total

Total Total

T

T T T T T

T T T




  
    (3.1) 

where 

  

1 1
2

2 2

1 2

1 2

ln

,

total

I R
R T

I R
T R R

R R

 
 

 


  (3.2) 

where 1I  is the conditional fare charged for Passenger One and 2I  is the conditional fare 

charged for Passenger Two. Variable 1R  is the rate at which the taxi is hailed by 

Passenger One and 2R  is the rate at which the taxi is hailed by Passenger Two. totalT  is 

the total time allotted for the resource to attempt both tasks, and 1T  is the expected 

optimum time spent pursuing Passenger One, as introduced in Chapter I.C.2. Note that 

the condition on each conditional fare charged is that the corresponding passenger was 

found and served. Thus, the conditional fare charged is fixed and does not account for the 

possibility that the passenger is not served. 

We can calculate the expectation of 1T  by removing the conditions of the 

presumed values of 1R  and 2R . This is the same as calculating the weighted average over 

all the possible values of random variables 1R  and 2R  where the weights are the joint PDF 

of 1R  and 2R . Applying the average of the optimum time from Equation (3.1) and (3.2) 

with random variables, 1R  and 2R , creates an average value for 1T . Recall an expectation 

of a function of two random variables is calculated via Equation (2.6). Removing the 
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conditions on 1T  is the same as calculating an expectation of a function of two random 

variables. Applying Equation (2.6) from Chapter II to finding the expectation of 1T  yields 

 

      
1 21 1 1 2 1 2 1 2, ,R RE T T T r r f r r drdr

 

 

  
 (3.3). 

where 
1 2R Rf  is the joint PDF of 1R  and 2R , the function 1T  is given in Equation (3.1), and 

the function 1 2( , )T r r  is given in Equation (3.2). If the plausible assumption is made that 

1R  and 2R  are independent random variables, then Equation (3.3) can be simplified to 

 

        
1 21 1 1 2 1 2 1 2, R RE T T T r r f r f r drdr

 

 

  
 (3.4) 

where 1(r1)Rf  and 2 ( 2)Rf r  are the probability density functions for rates 1R  and 2R  

respectively. If we further choose to model 1R  and 2R  as independent uniform random 

variables uniformly distributed over the ranges 1,min 1,max[ , ]R R  and 2,min 2,max[ , ]R R  

respectively, then Equation (3.4) simplifies further to 

 

 
  

  
2,max 1,max

2,min 1,min

1 1 1 2 1 2

1,max 1,min 2,max 2,min

1
, .

R R

R R

E T T T r r drdr
R R R R


   

 (3.5) 

Equation hail is a complicated equation, and using manual computation would be 

an inefficient process. By contrast, numerical integration with the use of MATLAB can 

provide quick, comparable results. The MATLAB code for numerical analysis is 

contained in Appendix C. 

For the initial scenario considered, both 1R  and 2R  were assumed to be uniform 

random variables over the range [1/hour, 10/hour] , and both conditional fare values were 

identical, i.e., 1I  = 2I  = $100. The known expected optimum time, 1( )E T , was predicted 

to be half of totalT  because the two tasks have identical conditional fares, identical rates, 

and the time allotted cannot favor either task. Indeed, this test case did yield the known 

answer of 1( ) 0.5 totalE T T , giving us initial confidence that our mathematics and 

methodology were correct. 
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With test results satisfactory, the next step was to create various ranges for 

uniform 1R  and 2R . This thesis used ranges that were run multiple times and included 

small values, significantly larger values, and values of little variation; changing one 

variable in Equation (3.3) helps determine effects on the average optimum time of the 

asset. These sample sets were considered in order to mimic the random nature of the 

possible values that affect the optimum time. The smallest number in the range, minR , is 

the random variable minimum value, and the largest number in the range is the random 

variable maximum value, 
maxR , to be substituted into Equation (3.3). Refer to Chapter IV 

for all values that are substituted for 1R  and 2R , separately. Next, the focus was on 1I  

with multiple different values while 1R , 2R , and 2I  remain consistent throughout the 

scenario. The last experiment observes how 2I  effects 1T  while 1R , 2R , and 1I  remain 

consistent throughout. 

B. MONTE CARLO SIMULATION 

This section illustrates how Monte Carlo simulation manipulates Equations (3.1) 

and (3.2) to simulate real-world events to find the average optimum time. Monte Carlo 

simulation is required to be mathematically independent from numerical analysis to 

verify the accuracy of the results. These results predict the optimum time allocation, 

which may increase the overall fare collected by the taxi or the overall intelligence value 

gathered by the asset. The Monte Carlo simulation also can be used to tell us more about 

the distribution of 1T  beyond just the expectation. The Monte Carlo simulation values can 

be used to form a histogram of 1T  values using the whole range of values for 1R  and 2R , 

each. There are two reasons to use the Monte Carlo simulation as a second method. The 

first reason is to confirm what the numerical analysis finds for 1T  and the second 

argument is to provide more detail on the distribution of the optimum time allocations. 

Refer to Chapter IV for histograms. 

In Monte Carlo simulation, numerical results emerge from repeatedly applying 

random variables to a computational algorithm [13]. Monte Carlo simulation can estimate 
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the expectation of random variable, T . In this method, the random variable T  is 

assumed to be a function of other random variables 1 2,  ,..., NX X X  , i.e. 

1 2( , ,..., )NT g X X X . The joint probability density function of 1 2,  ,..., NX X X  is 

assumed to be known. First, a random N -tuple 1 2( , ,..., )Nx x x  is chosen consistent with 

the known joint probability density function. Second, the corresponding value for T  is 

calculated using 1 2( , ,..., )Nt g x x x . These two steps are completed a large number of 

times, m , resulting in m  values of t . These m  values are averaged using the simplistic 

method of adding them and then dividing the sum by m . The resulting average is the 

Monte Carlo estimate of the expectation of 1T , herein called 1( )MCE T . 

In this work, the Monte Carlo simulation was conducted as follows: 

1. 1R  was chosen uniformly from the range 1,min 1,max[ , ]R R , 

2. 2R  was chosen uniformly from the range 2,min 2,max[ , ]R R , 

3. These values for 1R  and 2R  are substituted into Equations (3.1) and (3.2) 

yielding the corresponding value of 1T . 

4. Steps 1–3 were repeated 1m  more times. 

5. The m  values of 1T  are added and the sum is divided by m  to yield the 

Monte Carlo estimate of 1( )E T , i.e., 1( )MCE T . 

A computer was used for all five steps with 
610m  . The MATLAB code for this 

Monte Carlo simulation is contained in Appendix D. 

One of the key assumptions of our Monte Carlo simulation is that the number of 

trials, in this instance a million, is sufficient to make our estimate 1( )MCE T  to be very 

close to 1( )E T . The law of large numbers is used to increase the probability that the trials 

will replicate real-world events, known as relative frequency. The expected values of 1T  

resulting from numerical analysis, 1( )E T , and Monte Carlo simulation, 1( )MCE T  must 

match very closely, assuming m  is large. The uniform distribution was used to allow the 

results to be checked manually and quickly. 
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The Monte Carlo estimate of the expectation of 1T  will be compared to the 1( )E T  

yielded by numerical analysis. First, our Monte Carlo algorithm was verified by running 

three simple tests separately in MATLAB and Excel. The two applications are necessary 

to provide verification of the 1( )MCE T results and to make apparent any debugging in the 

MATLAB code. These tests consisted of verifying the average of random variable 1R  and 

random variable 2R  over a million times. The last simple test was averaging 1R  and 2R  

jointly and comparing the results generated by MATLAB and Excel. Once the simple 

tests showed satisfactory results, the Monte Carlo code was run for the same sample sets 

that were used for 1R , 2R , 1I , and 2I  in our numerical analysis method. 

C. OVERVIEW 

In summary, numerical analysis used the double integral in Equation (3.5) hail to 

determine the expected values for 1T . Monte Carlo simulation was used to estimate the 

same 1( )E T  by generating a million values of 1T  consistent with the joint distribution of 

random variables 1R  and 2R , and then averaging those million values. The 1( )E T  values 

from the numerical analysis and the 1( )MCE T  values from the Monte Carlo simulation 

will be compared in Chapter IV. 
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IV. RESULTS 

This chapter discusses results for the expected optimum time allocation for 

Passenger One, i.e.,  1E T  produced by numerical analysis and Monte Carlo simulation. 

The results are statistically identical, thus verifying the accuracy of the expected optimum 

time to pursue Passenger One,  1E T , values produced for each scenario of varying 

values for the hail rates for both passengers, 
1R  and 2R , and the conditional fare values of 

both passengers, 1I , and 
2I . In the remainder of this thesis, the expected total fare 

collected, E(totalfare collected) , Equation (B.8) in Appendix B will be maximized with 

the expected optimum time to pursue both passengers,  1E T  and  2E T . The probability 

of successfully picking up Passenger One, Pr(Passenger One is picked up)  Equation 

(B.4), will be used in an attempt to find a correlation between the expected optimum time 

to pursue both passengers,  1E T  and  2E T , values and parameters. Equations (B.4) and 

(B.8) proves that any modifications to the expected optimum time results, found using 

numerical analysis and Monte Carlo simulation, could cause the taxi to lose money and 

not gain the maximum amount of fare money that could be obtained in the available time 

duration. 

A. COMPARISON OF RESULTS 

This section scrutinizes 55 possible taxi scenarios resulting in the expected 

optimum time to pursue both passengers,  1E T  and  2E T , for each scenario. Numerical 

analysis and Monte Carlo simulation optimum expectation of time to pursue Passenger 

One,  1E T , columns match, allowing the optimum expectation of time to pursue 

Passenger Two, 2( )E T , to be calculated a single time for each scenario. The value for 

optimum expectation of time to pursue Passenger Two, 2( )E T , is easily found by 

subtracting the expected optimum time to pursue Passenger One,  1E T , from the total 

duration, also known as totalT . For each scenario, the expected optimum time allocation to 
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pursue each passenger,  1E T  and  2E T , for the taxi is calculated assuming the taxi is 

available for one hour. The optimum time allocation is defined to be the allocation that 

corresponds to the highest expected total fare during the one hour assumed available for 

the taxi. In the first group of scenarios, the scenarios are identical except for the 

distributions of the rate of hails for Passenger One, 
1R . In the second group, the scenarios 

are identical except for the distributions of the rate of hails for Passenger Two, 2R . In the 

third group, the scenarios are identical expect for the distributions of the conditional fare 

of Passenger One, 1I . In the fourth group, the scenarios are identical expect for the 

distributions of the conditional fare of Passenger Two, 2I . In the fifth group, the 

scenarios are identical except the distributions of the conditional fare of Passenger One, 

1I  with different but constant hail rates for both passengers, 1R  and 2R . The sixth group 

of scenarios are identical expect the distributions of the conditional fare of 

Passenger One, 1I , with a small hail rate for Passenger One, 1R , compared to the hail rate 

for Passenger Two, 2R . The last group of scenarios are identical expect for the 

distributions of the conditional fare of Passenger One, 1I , with a much smaller hail rate 

for Passenger One, 1R , compared to the hail rate for Passenger Two, 2R . 

1. Group One 

The results of group one, scenarios one through eight, for the expected optimum 

time to pursue Passenger One, 1( )E T , obtained were identical to a fraction of a 

percentage for all scenarios performed for various ranges of uniformly distributed hail 

rates of Passenger One, 1R , as displayed in Table 1. The final results of the expected 

optimum time to pursue Passenger One,  1E T , is explained by calculations found in 

Appendix B for the probability of successfully picking up Passenger One, 

Pr(Passenger One is picked up) , and the total conditional expected fare value, 

E(totalfare collected) , and calculations found in Appendix E to find the probability of 

the hail rate of Passenger One, 1R , being larger than the hail rate of Passenger Two, 2R , 
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 1 2Pr R R . The mentioned probabilities of successfully picking up Passenger One, 

Pr(Passenger One is picked up) , and the hail rate of Passenger One, 1R , being larger than 

the hail rate of Passenger Two, 2R , will be used to support why the taxi time allocation 

results are as they are. The total conditional expected fare value, E(total fare collected), is 

examined to explain what the taxi driver gains from pursuing that passenger for the 

recommended time compared to other total expected fare values that are not at the 

expected optimum times,  1E T  and  2E T . 

The expected optimum time to pursue Passenger One,  1E T , found in Table 1 is 

the value for which the expected total fare collected, E(totalfare collected) , is a 

maximum value. If a time, t , is stolen from Passenger One and given to Passenger Two, 

making 1 1( )T E T , then the expected fare from Passenger One, 

E(fare from Passenger One) , must drop in value while the expected fare from Passenger 

Two, E(fare from Passenger Two)  will increase. Clearly, the increase in the expected 

fare from Passenger Two, E(fare from Passenger Two)  is more than compensated for by 

the decrease in the expected fare from Passenger One, E(fare from Passenger One) . This 

is true here and for all scenarios. 



 24 

Table 1.   Results for numerical analysis (Equation (3.5)) and Monte Carlo 

simulation averaging to determine the expected optimum time 

pursuing Passenger One,  1E T , with various uniform distributions 

for the hail rate for Passenger One, 
1R . 

Minimum of 2R  = [1/hour], Maximum of 2R  = [10/hour], 1I  = $100, 
2I  = $100, 

totalT  = 60 minutes 

Scenario 

Minimum 

of 1R

(/ hour) 

Maximum 

of 1R

(/ hour) 

Numerical 

Analysis 1( )E T  

(minutes) 

Monte Carlo 

simulation 1( )E T  

(minutes) 

2( )E T  

(minutes) 

1 1.00 10.00 30.00 30.00 30.00 

2 1.00 25.00 22.37 22.37 37.63 

3 10.00 1x10
6
 0.01 0.01 59.99 

4 1.00 2.00 35.51 35.51 24.49 

5 1.00 5.00 33.96 33.96 26.04 

6 1.00 7.00 32.32 32.32 27.68 

7 0.11 0.25 18.66 18.66 41.34 

8 0.10 0.101 14.61 14.62 45.38 

 

a. Scenario One 

The expected optimum values of time to pursue Passenger One, 1( )E T , in Table 1 

are applicable to the previously mentioned taxi scenario. Recall that the focus is to find 

the optimum time to allocate the limited resource, the taxi, to pursuing the conditional 

fares of Passenger One and Passenger Two. For example, if prior experience shows that 

the hail rate for Passenger One, 1R , can vary between 1 hail per hour and 10 hails per 

hour and the rate for Passenger Two, 2R , is also between 1 hail per hour and 10 hails per 

hour, and the conditional fare value of both tasks is 1I  = 2I  = $100, then the expected 

optimum time allocated to pursuing Passenger One and Passenger Two is exactly 30 

minutes each. Figure 3 is the histogram from the Monte Carlo simulation for Scenario 

One. This scenario was considered as a check of the algorithm. Since each passenger has 

the same conditional fare value and the same hail rate, then it makes sense that the 

optimum solution would not favor either passenger, since they are indistinguishable in 

the parameters that impact the expected total fare value. Therefore, we know the 

optimum solution is to split the hour evenly between the two tasks. Furthermore, the rates 
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are just as likely to favor one passenger as the other; therefore, the histograms are 

symmetrical. The probability density functions for optimum allocation times, 
1T  and 

2T , 

were not calculated in this work. However, histograms have approximately the same 

shape as the corresponding probability density functions. Therefore, optimum allocation 

times 
1T  and 

2T  have probability density functions with the same shapes as the 

histograms in Figure 3. Notice that not only does the Monte Carlo simulation confirm the 

expected optimum time allocation is 30 minutes for each, but it shows that the optimum 

time of both passengers, 
1T  and 

2T , have the same, symmetrical, probability distributions. 

These histograms reveal that under no circumstances consistent with Scenario One, can 

we expect to optimize the fare if less than 18 minutes  (i.e., 0.3 hours,) is allocated to 

seeking either passenger. That is useful information for the taxi driver seeking to 

maximize his fares for the assumed available hour. The histogram of the optimum time to 

pursue Passenger Two, 2T , is a mirror image and is not shown for other scenarios. 

 

  

Figure 3.  Scenario One histogram. 

 

b. Scenario Two and Three 

Examining Scenario Two reveals the expected optimum time for a hail rate that is 

potentially larger means less time spent pursuing that passenger under these 

circumstances. The circumstances of Scenario Two are the hail rate for Passenger One, 

1R , can vary between 1 hail per hour and 25 hails per hour and the hail rate for Passenger 
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Two, 2R , is between 1 hail per hour and 10 hails per hour, and the conditional fare values 

of both tasks, 1I  and 
2I , remain at the $100 value, then the expected optimum time to 

pursue Passenger One, 1( )E T , is 22.4  minutes and the expected optimum time to pursue 

Passenger Two, 
2( )E T , is 37.6 minutes. This scenario allows more time to be spent 

seeking Passenger Two due to the larger probability of successfully pursuing Passenger 

One. Pr(Passenger One is picked up)  maximum value is nearly one (for the hail rate of 

Passenger One, 1R , between 10 hails per hour and 25 hails per hour). The probability of 

successfully picking up Passenger One, Pr(Passenger One is picked up) , is calculated in 

Appendix B Equation (B.4) and proves that a potentially quicker hail rate is an influential 

parameter for obtaining the conditional fare money. The results of Scenario Two, in 

Table 1, make sense because the probability of Passenger One hail rate, 1R , being larger 

than the hail rate of Passenger Two, 2R  , i.e.  1 2Pr R R , is equal to 0.8125 . This is 

caused by Passenger One usually hailing faster due to the hail rate of Passenger One, 1R , 

being between 11 hails per hour and 25 hails per hour. The probability calculation of 

 1 2Pr R R for Scenario Two is found in Appendix E. 

Figure 4 is the histogram from the Monte Carlo simulation of Scenario Two that 

displays the mode of Scenario Two to be approximately 18 minutes. For this scenario, the 

recommendation to the taxi driver is the expected optimum time to achieve the taxi fare 

of $100, if the passenger is successfully picked up, is approximately 22.4 minutes. 

Observe that the expected optimum time to pursue Passenger One, 1( )E T , in Scenario 

Two in Table 1 is not the same as the peak of the histogram in Figure 4.  
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Figure 4.  Scenario Two histogram. 

 

This is an example of the relationship between the mean, also known as the 

expected optimum time to pursue Passenger One, 1( )E T , and the mode which is 

displayed as the highest peak in Figure 4 and is the most likely value for 1T . This 

explains why the results in Table 1 do not align with Figure 4 peaks and crests. Figure 4 

indicates that pursuing Passenger One for approximately 10 minutes to 42 minutes will 

yield $100 in fare money compared to pursuing Passenger One for the average time to 

successfully pursue is 22.4 minutes. The expected optimum time to pursue Passenger One 

is 22.4 minutes to maximize the expected overall fare collected, E(totalfare collected) . 

Scenario three reveals the expected optimum time for a hail rate that is much 

larger means a small amount of time will be recommended to pursue that passenger. The 

circumstances of Scenario three are the hail rate for Passenger One, 1R , can vary between 

10 hails per hour and 1,000,000 hails per hour and the hail rate for Passenger Two is 

between 1 hail per hour and 10 hails per hour, with the conditional fare of each task 

remains $100, then the expected optimum time to pursue Passenger One, 1( )E T , is 

0.1  minute and the expected optimum time to pursue Passenger Two, 2( )E T , is 

59.9 minutes. This scenario allows more time to be spent seeking Passenger Two due to 
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the larger probability, of successfully pursuing Passenger One. 

Pr(Passenger One is picked up)  maxing out at nearly one, using Equation (B.4). The 

probability of successfully picking up Passenger One, Pr(Passenger One is picked up) , 

proves that the quicker hail rate is  an influential parameter. The results of Scenario three, 

in Table 1, make sense because the probability the hail rate of Passenger One, 1R , being 

larger than the hail rate of Passenger Two, 2R ,  1 2Pr R R is equal to one. This is due to 

the slowest possible hail for Passenger One (10 hails per hour) being larger than the 

fastest possible hail for Passenger Two (10 hails per hour). The probability calculation of 

 1 2Pr R R for Scenario three uses Equation (E.2). 

c. Scenarios Seven and Eight 

Notably, a majority of the expected optimum time to pursue Passenger One, 

1( )E T , values in Table 1 are less than 30 minutes regardless of Passenger One being 

found faster (Scenarios two and three) or slower (Scenarios seven and eight). There are 

two reasons for  the expected optimum time to pursue Passenger One, 1( )E T , to be less 

than 30 minutes. One reason is the scenarios’ parameters ensure more hails for Passenger 

One, 1R , in less time when compared to Passenger Two hail rate parameters, 2R , as 

explained in section IV.A.1.b, thus less than half of the taxi time is allocated to 1( )E T  and 

the other reason is that Scenarios seven and eight involve a smaller probability of 

Passenger One being picked up, Pr(Passenger One is picked up)  Equation (B.4), thus 

leaving more time for Passenger Two to be pursued for the same conditional fare value, 

2I . Scenario sevens’ probability of Passenger One being successfully picked up, 

Pr(Passenger One is picked up) , for such circumstances range from 0.034 to 0.075. 

Scenario eights’ probability of successfully picking up Passenger One, 

Pr(Passenger One is picked up) , is 0.02. The small probabilities of Passenger One being 

picked up, Pr(Passenger One is picked up) , and the small conditional expected fare for 

Passenger One, E(fare from Passenger One)  Equation (B.1), are the reason that the 

expected optimum time pursuing Passenger Two, 2( )E T , are so large for Scenarios seven 
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and eight. Scenarios seven and eight probability of Passenger One hail rate, 
1R , being 

larger than the hail rate of Passenger Two, 2R  ,  1 2Pr R R  is equal to zero, using 

Equation (E.2). This is due to Passenger One hail rate being much smaller than Passenger 

Two’s hail rate. Figure 5 is the histogram of Scenario seven. 

 

 

Figure 5.  Scenario Seven histogram. 

The histogram of Scenario seven, in Figure 5, shows these circumstance are likely 

to allocate zero time to 1T , peak of Figure 5, however the expected optimum time to purse 

Passenger One, 1( )E T , is 18.6 minutes (0.31 of an hour). This is another example of 

where the mode of 1T  and the expected optimum time pursuing Passenger One, 1( )E T , 

does not align. Notice the larger y-axis scale of Figure 5 compared to previous figures. 

This parameters reflect the low probability of Passenger One being picked up, 

Pr(Passenger One is picked up) , and the conditional fare value not compensating for this 

low probability. 

d. Scenarios Four through Six 

The last examination of Table 1 focuses on Scenarios four through six. The 

expected optimum time pursing Passenger One, 1( )E T , values recommended are more 
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than half the assumed available hour, totalT . This is anticipated by performing similar 

calculations found in Appendix B for the probability of successfully picking up Passenger 

One, Pr(Passenger One is picked up) , and the probability of the hail rate of Passenger 

One, 
1R , being larger than the hail rate of Passenger Two, 2R ,  1 2Pr R R , found in 

Appendix E. The probability of successfully picking up Passenger One, 

Pr(Passenger One is picked up) , for Scenario four is 0.45 to 0.69. The probability  the 

hail rate of Passenger One, 1R , is larger than the hail rate of Passenger Two, 2R , 

1 2Pr( )R R  equals 0.44, for Scenario four. For Scenario five the probability of 

successfully picking up Passenger One, Pr(Passenger One is picked up) , is 0.43 to 0.94 

while the probability of the hail rate of Passenger One, 1R , is larger than the hail rate of 

Passenger Two, 2R , 1 2Pr( )R R , is 0.28. Scenario six circumstances probability of 

successfully picking up Passenger One, Pr(Passenger One is picked up) , are 0.42 to 0.97 

while the probability of the hail rate of Passenger One, 1R , is larger than the hail rate of 

Passenger Two, 2R , 1 2Pr( )R R , is 0.17. This was to be predicted as the hail rates for 

Passenger One, 1R , are smaller than the hail rates of Passenger Two, 2R , and thus 

requiring more taxi time to accomplish pursuing Passenger One, 1( )E T , but as the range 

of hail rates for Passenger One, 1R  becomes more wide spread the probability of 

successfully picking up Passenger One, Pr(Passenger One is picked up) , increases from 

Scenario four to Scenario seven. 

Scenarios four through six reveal that more time should be spent seeking 

Passenger One than Passenger Two, largely due to the hail rate of Passenger One, 1R , 

being smaller than the hail rate of Passenger Two, 2R , for the same conditional fare 

value. The 1T  for Scenario four is displayed in Figure 6.  
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Figure 6.  Scenario Four histogram. 

 

2. Group Two 

The next set of scenarios focuses on varying the distribution for uniform random 

variable hail rate for Passenger Two, 2R . These scenarios were run to fully explore the 

relationship between the hail rate for Passenger Two, 2R , and the expected optimum time 

to pursue Passenger One, 1( )E T . Table 2 displays the values of the expected optimum 

time pursuing Passenger One, 1( )E T . The key observations from Table 2 are that the 

results from numerical analysis and Monte Carlo simulation match, and when comparing 

Table 1 and Table 2, the expected optimum time to purse the passengers, 1( )E T  and 

2( )E T , values are interchanged. This was expected as the parameters for the hail rates of 

the passengers, 1R  and 2R , are reversed thus resulting in expected optimum time to purse 

the passengers, 1( )E T  and 2( )E T , values also being reversed. Comparing Figure 4 and 

the histogram of Scenario 10, in Figure 7 concurs with this observation. The observations 

from section IV.A.1 apply to this group of scenarios. 
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Table 2.   Results for Numerical analysis (Equation (3.5)) and Monte Carlo 

simulation averaging to determine the expected optimum time 

pursuing Passenger One, 1( )E T , with various uniform distributions 

of hail rate for Passenger Two, 2R . 

Minimum of 
1R  = [1/hour], Maximum of 

1R  = [10/hour], 1I  = $100, I2 = $100, 

totalT  = 1 hour 

Scenario 

Minimum 

of 2R  

(/ hour) 

Maximum 

of 2R  

(/ hour) 

Numerical 

Analysis 1( )E T  

(minutes) 

Monte Carlo 

simulation 1( )E T  

(minutes) 

2( )E T  

(minutes

) 

9 1.00 10.00 30.00 30.00 30.00 

10 1.00 25.00 37.63 37.62 22.38 

11 10.00 1x10
6
 59.99 59.99 0.01 

12 1.00 2.00 24.49 24.50 35.50 

13 1.00 5.00 26.04 26.04 33.96 

14 1.00 7.00 27.68 27.69 32.31 

15 0.11 0.25 41.33 41.34 18.66 

16 0.10 0.101 45.39 45.41 14.59 

 

Figure 7.  Scenario 10 histogram. 

 

3. Group Three and Group Four 

The next set of scenarios examines the expected optimum time pursuing 

Passenger One, 1( )E T , with respect to various conditional fare values for the passengers, 
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1I  and 
2I . Table 3 displays the results of the expected optimum time to pursue Passenger 

One, 1( )E T , with changing conditional fare values for Passenger One, 1I , values, while 

Table 4 displays the results for the expected optimum time to pursue Passenger One, 

1( )E T , with changing conditional fare values for Passenger Two, 
2I , values. Indeed, 

Table 3 and Table 4 document the same hail rates for both passengers, 1R  and 2R . Not 

surprisingly, the values of expected optimum time to pursue the passengers, 1( )E T  and 

2( )E T , are interchanged when comparing Table 3 and Table 4. Due to this simple 

relationship observed between the scenarios in Table 3 and Table 4, only observations 

about the scenarios in Table 3 will be discussed in detail. The stated observations for 

Table 3 scenarios apply to the Table 4 scenarios, but with Passengers One and Two 

exchanged. Scenario 17 was used as a check for the algorithm as seen in Scenarios one 

and nine. The histogram for Scenario 17 is the same as Figure 3.  

Table 3.   Results for Numerical analysis (Equation (3.5)) and Monte Carlo 

simulation averaging to determine the expected optimum time 

pursuing Passenger One, 1( )E T , with various conditional fare 

values for Passenger One, 1I . 

Minimum of 1R  = [1/hour], Maximum of 1R  = [10/hour], minimum of 2R  = [1/hour], 

maximum of 2R  = [10/hour], 2I  = $100, totalT  = 1 hour 

Scenario 
1I  ($) 2I  ($) 

Numerical Analysis 

1( )E T  (minutes) 

Monte Carlo simulation 

1( )E T  (minutes) 
2( )E T  

(minutes) 

17 100.00 100.00 30.00 30.00 30.00 

18 101.00 100.00 30.06 30.05 29.95 

19 1x10
3
 100.00 44.24 44.24 15.76 

20 1x10
4
 100.00 53.90 53.92 6.08 

21 1x10
5
 100.00 58.56 58.57 1.43 

22 99.00 100.00 29.93 29.95 30.05 

23 50.00 100.00 25.61 25.61 34.39 

24 25.00 100.00 21.22 21.24 38.76 
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a. Scenario 18 

Scenario 18 includes the conditional fare value for Passenger One, 1I , to be $101 

while the conditional fare values for Passenger Two, 
2I , was $100, and the hail rates for 

the taxi are still uniformly varying from 1 hail per hour to 10 hails per hour for both 

passengers, 
1R  and 2R . Then the resultant expected optimum time pursuing Passenger 

One, 1( )E T , is 30.1 minutes. The probability of successfully picking up Passenger One, 

Pr(Passenger One is picked up) , is equal to a minimum of 0.39 to a maximum of 0.99 

and is the same for Passenger Two because the hail rate parameters, 1R  and 2R , are 

identical. This example illustrates that the expected optimum time to pursue Passenger 

One, 1( )E T , increases when the conditional fare value for Passenger One, 1I , is 

increased. The increase of the conditional fare value by $1 equates to approximately half 

a minute of taxi time. This statement comes from comparing Scenario 18 to Scenario 17. 

The 1T  for Scenario 18 is displayed in Figure 8.  

 

 

Figure 8.  Scenario 18 histogram. 

 

Scenarios 18 through 21 are all cases where the conditional fare value of 

Passenger One, 1I , was larger than the conditional fare value of Passenger Two, 2I , and 



 35 

since the hail rates of both passengers are identical all the results show a preference, of 

varying degrees, for securing the conditional fare that is larger, i.e., Passenger One’s, 1I . 

Scenarios 22 through 24 further support that the algorithms’ preference for allocating 

more time to secure the conditional fare value that is larger under these circumstances.  

Table 4.   Results for Numerical analysis (Equation (3.5)) and Monte Carlo 

simulation averaging to determine the expected optimum time 

pursuing Passenger One, 1( )E T , with various conditional fare 

values for Passenger Two, 2I . 

Minimum of 1R  = [1/hour], Maximum of 1R  = [10/hour], minimum of 2R  = [1/hour], 

maximum of 2R  = [10/hour], 1I  = $100, totalT  = 1 hour 

Scenario 

1I  ($) 2I  ($) 

Numerical 

Analysis 1( )E T  

(minutes) 

Monte Carlo 

simulation 1( )E T  

(minutes) 

2( )E T  

(minutes) 

25 100.00 100.00 30.00 29.99 30.01 

26 100.00 101.00 29.94 29.94 30.06 

27 100.00 1x10
3
 15.76 15.79 44.21 

28 100.00 1x10
4
 6.10 6.10 53.90 

29 100.00 1x10
5
 1.44 1.44 58.56 

30 100.00 99.00 30.07 30.07 29.93 

31 100.00 50.00 34.39 34.39 25.61 

32 100.00 25.00 38.76 38.76 21.24 

 

4. Group Five 

Group Five scenarios examine the effect of different hail rates between Passenger 

One and Two, 1R  and 2R , with varying conditional fare values for Passenger One, 1I . 

Different combinations of hail rates with conditional fare values must be explored to 

resemble possible circumstances that the taxi driver may encounter. Studying the 

combinations of different hail rates between Passenger One and Two, 1R  and 2R , with 

varying conditional fares for Passenger One, 1I , shows a readily apparent effect of one of 

the parameters on the expected optimum time of Passenger One, 1( )E T . If the taxi driver 
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only considered the fare value to base his decision on how to allocation his time to 

pursuing passengers, then he would be completely ignoring the probability of collection 

which takes into account the rates of hailing by that passenger. This is a less then 

optimized method to determine to time allocation and illustrates the importance the hail 

rate have in determining the optimized expected total fare collected. The relationship 

between conditional fare values and time allocated is complex as shown by Equation 

(1.2) but also must consider the hail rates. All the scenarios in this group have a 

probability of Passenger One hail rate, 
1R , being larger than the hail rate of Passenger 

Two, 2R , 1 2Pr( )R R  equal to 0.81. 

Table 5.   Resultant expected optimum time for Passenger One, 1( )E T , for 

various conditional fare values for Passenger One, 1I , and different 

hail rate for Passenger One, 1R , and Passenger Two, 2R . 

Minimum of 2R  = [1/hour], Maximum of 2R  = [10/hour], 2I  = $100, totalT  = 1 hour 

Scenario 

Minimum 

of 1R  

(/hour) 

Maximum 

of 1R  

(/hour) 

1I  ($) 

Numerica

l Analysis 

1( )E T  

(minutes) 

Monte Carlo 

simulation 

1( )E T  (minutes) 

2( )E T  

(minutes

) 

33 1.00 25.00 101.0 22.42 22.42 37.58 

34 1.00 25.00 1x10
3
 31.67 31.66 28.34 

35 1.00 25.00 1x10
4
 39.25 39.22 20.78 

36 1.00 25.00 1x10
5
 44.96 44.95 15.05 

37 1.00 25.00 99.00 22.33 22.33 37.67 

38 1.00 25.00 50.00 19.54 19.54 40.46 

39 1.00 25.00 25.00 16.70 16.72 43.28 

 

a. Table 5 Compared to Table 3 

Comparing Table 5 and Table 3, it becomes apparent that the expected optimum 

time to pursue Passenger One, 1( )E T , for Scenarios 33 through 36 are decreased 

compared to Scenarios 18 through 21. The resultant expected optimum time pursuing 

Passenger One, 1( )E T , is affected  by the wide range hail rate for Passenger One, 1R  as 
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seen in circumstances of Scenarios 33 through 36. The probability of successfully picking 

up Passenger One, Pr(Passenger One is picked up) , for circumstances of Scenarios 33 to 

36 range widely but all have a maximum value of almost one. This is interesting because 

comparing Table 3 Scenarios 18 through 21 to Table 5 Scenarios 33 through 36, Table 3 

probability of successfully picking up Passenger One, Pr(Passenger One is picked up) , 

results in the maximum value of nearly one for only Scenarios 20 and 21 whereas the 

Scenarios 33 through 36 probability of successfully picking up Passenger One, 

Pr(Passenger One is picked up) , is nearly one for all scenarios. This is evidence that the 

hail rates effect the expected optimum time to pursue Passenger One, 1( )E T  and must be 

considered to accurately optimize time allocation of the taxi. For example if the taxi 

driver only considered the conditional fare values, 1I  and 2I , to allocate available time, 

like in Table 3, then (s)he would have wasted time by over allocating approximately 12 to 

14 minutes for circumstances of Scenarios 34 through 36 in comparison with Scenarios 

19 through 21. This same comparison can be made for Scenarios 33 and 37 through 39 to 

Scenarios 18 and 22 through 24. The expected optimum times, 1( )E T  and 2( )E T , 

difference between the groups of scenarios is five minutes to eight minutes. This is an 

easily apparent example of how optimizing the taxi time allocation is effected by the hail 

rates of the passengers, 1R  and 2R . 

b. Scenario 36 

Scenario 36 is a case where the hail rate of Passenger One, 1R , and the conditional 

fare value of Passenger One, 1I , is much higher than both the hail rates of Passenger 

Two, 2R , and the conditional fare value of Passenger Two, 2I . Notice that Passenger One 

has a much larger expected optimum time allocation for Passenger One, 1( )E T , compared 

to Passenger Two, 2( )E T  but not all of the taxi time is spent on Passenger One. This 

scenario is an example of where the probability of picking up Passenger One, 

Pr(Passenger One is picked up) , is greater than 0.50 for all possible hail rates of 

Passenger One and allows the taxi time to be allocated to Passenger Two to maximize the 
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total conditional expected fare value, E(totalfare collected) . This scenario also 

contradicts scenario three observation of the larger hail rate equates to a smaller value for 

the expected optimum time to pursue Passenger One, 1( )E T . Scenario 36 exhibits 

circumstances where the conditional fare value for Passenger One, 1I , compensates for 

the hail rate of Passenger One, 1R . 

5. Group Six 

The following scenarios examine how the relationship between a smaller hail rate 

of Passenger One, 1R , and varying conditional fare values for Passenger One, 1I , 

increases the expected optimum time spent pursuing Passenger One, 1( )E T , when 

compared to Table 5. Table 6 displays the expected optimum time pursuing Passenger 

One, 1( )E T , values for Scenarios 40 through 47. All scenarios in this group have a 

probability of Passenger One hail rate, 1R , being larger than the hail rate of Passenger 

Two, 2R , i.e., 1 2Pr( ) 0.44R R   based on the hail rate parameters of these scenarios. 

Table 6.   Resultant expected optimum time pursuing Passenger One, 1( )E T  

for various conditional fare values for Passenger One, 1I  and 

1 2Pr( ) 0.5R R  . 

Minimum of 2R  = [1/hour], Maximum of 2R  = [10/hour], 2I  = $100, totalT  = 1 hour 

Scenario 

Minimu

m of 1R  

(/hour) 

Maximu

m of 1R  

(/hour) 

1I  ($) 

Numerical 

Analysis 

1( )E T  

(minutes) 

Monte Carlo 

simulation 

1( )E T  

(minutes) 

2( )E T  

(minutes

) 

40 1.00 2.00 101.0 35.61 35.61 24.39 

41 1.00 2.00 1x10
3
 56.62 56.61 3.39 

42 1.00 2.00 1x10
4
 60.00 60.00 0.00 

43 1.00 2.00 1x10
5
 60.00 60.00 0.00 

44 1.00 2.00 99.00 35.41 35.41 24.59 

45 1.00 2.00 58.50 29.98 29.99 30.01 

46 1.00 2.00 50.00 28.43 28.42 31.58 

47 1.00 2.00 25.00 21.47 21.48 38.52 
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a. Effects of a Close Range of Hail Rates 

Examination of Table 6 reveals that the hail rate of Passenger One, 1R , has a high 

probability of being smaller than the hail rate of Passenger Two, 2R , and the expected 

optimum time spent pursuing Passenger One, 1( )E T  will be larger. The higher 

conditional fare values for Passenger One, 1I , as seen in Scenarios 40 through 43 are 

compensation for the low hail rates of Passenger One, 1R , and recommend the time 

allocation of the taxi be more than half of the total time available, totalT . Scenario 44 

recommends the taxi driver spend more than 30 minutes pursuing Passenger One, 1( )E T , 

regardless of the smaller conditional fare value of Passenger One, 1I . As can be seen 

from Scenarios 46 and 47, the low hail rate of Passenger One, 1R , combined with the low 

conditional fare value of Passenger One, 1I , creates circumstances for Passenger Two 

parameters to have more of the taxi time allocation. 

b. Scenario 45 

Further study of these parameters, using numerical analysis and Monte Carlo 

simulation, revealed that the conditional fare value of Passenger One, 1I , could be $58.50 

compared to the conditional fare value of Passenger Two, 2I , equal to $100 before the 

expected optimum time pursuing Passenger One, 1( )E T , and the expected optimum time 

pursuing Passenger Two, 2( )E T , were allocated equal amounts time. Figure 9 displays 

the histogram of this unique scenario. This is an example of how the hail rates combined 

with the conditional fare values could affect the management of the taxi’s time and shows 

the error in thinking that only the conditional fare value is the only parameter to be 

considered when trying to make the most money with the taxi. 
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Figure 9.  Scenario 45 histogram. 

 

6. Group Seven 

The last set of scenarios study the expected optimum time pursuing Passenger 

One, 1( )E T , with parameters that include hail rates of Passenger One, 1R , to be 

significantly smaller, i.e., 0.11 hails per hour to 0.25 hails per hour (once every four to 

nine hours), than the hail rates of Passenger Two, 2R , which remain between 1 hail per 

hour and 10 hails per hour combined with varying values of the expected conditional fare 

for Passenger One, 1I . Comparing Table 6 and Table 7 reveals how a significantly 

smaller hail rate of Passenger One, 1R , affects the expected optimum time pursing 

Passenger One. In many scenarios significant time is allocated to Passenger One, in spite 

of having a low hail rate. This is another illustration of the complex interaction of the two 

rates and the two conditional values with the necessity to consider all four factors to 

achieve optimum overall results. All scenarios in this group have a probability of 

Passenger One hail rate, 1R , being larger than the hail rate of Passenger Two, 2R , 

1 2Pr( )R R  equal to one. 
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Table 7.  Resultant expected optimum time pursuing Passenger One, 1( )E T  

for various conditional fare values for Passenger One, 1I , 

combined with a much smaller hail rate for Passenger One, 1R . 

Minimum of 2R  = [1/hour], Maximum of 2R  = [10/hour], 
2I  = $100, totalT  = 1 hour 

Scenario 

Minimum 

of 1R

(/hour) 

Maximu

m of 1R

(/hour) 

1I  ($) 

Numerical 

Analysis 

1( )E T  

(minutes) 

Monte Carlo 

simulation 

1( )E T  (minutes) 

2( )E T

(minutes

) 

48 0.11 0.25 101.00 18.75 18.76 41.24 

49 0.11 0.25 275.00 30.01 30.00 29.99 

50 0.11 0.25 1x10
3 48.01 48.01 11.99 

51 0.11 0.25 1x10
4 60.00 60.00 0.00 

52 0.11 0.25 1x10
5 60.00 60.00 0.00 

53 0.11 0.25 99.00 18.58 18.57 41.43 

54 0.11 0.25 50.00 13.62 13.62 46.38 

55 0.11 0.25 25.00 9.72 9.71 50.29 

a. Scenario 51 and 52

Scenarios 51 and 52 recommend all the taxi time to pursuing Passenger One to 

optimize the total expected fare. The probability of successfully picking up Passenger 

One, Pr(Passenger One is picked up) , for Scenarios 51 and 52 range from 0.10 to 0.22. 

The only reason that the algorithms would allocate all the taxi time to pursuing Passenger 

One, 1( )E T , to a passenger that hails at a rate less than once every four hours, is that the 

conditional fare value is significantly larger than Passenger Two’s conditional fare value. 

This is an important discovery because the goal is to find the expected optimum time 

allocation to maximize the overall expected fare gathered. Amazingly, the algorithms 

recommend the taxi to pursue a passenger that only hails at most once every four hours 

for a conditional fare of $10,000 or $100,000 compared to a passenger that will hail once 

every hour at the least for $100 fare. The other passenger, Passenger Two, has a 

probability of picking up Passenger Two, Pr(Passenger Two is picked up) , close to one 

but the small conditional fare of $100 voids this high probability. 
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b. Table 7 versus Table 6

Comparing Table 6 and Table 7 reveals that a high probability of successfully 

picking up Passenger One, Pr(Passenger One is picked up) , is not a requirement to have 

taxi time allocated. In Scenarios 48 through 55, the probability of successfully picking up 

Passenger One, Pr(Passenger One is picked up) , ranges from 0.02 to 0.22 and yet 

Scenarios 51 and 52 have all the taxi time allocated to pursuing Passenger One. This is 

what happened in Scenarios 42 and 43 but the hail rate of Passenger One, 
1R , in 

Scenarios 42 and 43 ranges from 1 hail per hour to 2 hails per hour. The probability of 

picking up a passenger does not account for the conditional fare value and is the reason 

why the taxi cannot solely base time allocation on the hail rates for passengers. The taxi 

driver must consider both the hail rates and fare values to optimize the overall money 

collected. 

c. Scenario 49

In Scenario 49 the algorithms recommend the available time allocation to be 

evenly split between both passengers, 1( )E T  and 2( )E T . Scenario 49 reveals the 

conditional fare value of Passenger One, 1I , must equal $275 compared to the conditional 

fare value of Passenger Two, 2I , equal to $100 with the hail rates of the circumstance of 

Group Seven to allocate 30 minutes to Passenger One. This scenario illustrates how much 

compensation by the conditional fare value is needed to overcome the low hail rate of 

Passenger One, 1R . Figure 10 displays the 1T  of Scenario 49. 
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Figure 10.  Scenario 49 histogram. 

 

B. OVERVIEW 

This chapter displays how the expected optimum time to pursue Passenger One, 

1( )E T , varied for various uniform distributions of the hail rates, 1R  and 2R , and various 

conditional fare values, 1I  and 2I . It then focuses on illustrating the effects of the 

different hail rate ranges while varying one conditional fare value. The most significant 

revelations came from scenarios 36 (Table 5), 42, 43, 45 (Table 6), 49, 51, and 52 

(Table 7). Scenario 36 shows that the probability of Passenger One hail rate, 1R , being 

larger than the hail rate of Passenger Two, 2R ,  1 2Pr 0.8125R R   combined with a 

much larger conditional fare value still allocates taxi time to the other passenger, 

Passenger Two, regardless of the smaller probability of successfully securing the taxi hail 

and fare. This scenario recommends the taxi driver should spend 45 minutes pursuing 

Passenger One with those circumstances of Scenario 36. This is due to the chance that 

Passenger One hail rate, 1R , is less than Passenger Two in the assumed one hour 

available and the conditional fare value of Passenger One being $100,000. Scenarios 42 

and 43 include a probability of Passenger One hail rate, 1R , being larger than the hail rate 

of Passenger Two, 2R ,  1 2Pr 0.44R R   and a conditional fare value of Passenger 
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One, 1I , is two and three times more than the Passenger Two conditional fare value, 
2I . It 

is then recommended that all of the taxi time is allocated to pursue Passenger One. 

Scenarios 42 and 43 indicate that the conditional fare value is important to optimize the 

use of the taxi but the hail rates and the probabilities of success most be considered to 

fully understand how to optimize the taxi in the one hour available. Scenario 45 

acknowledges the hail rate of Passenger One, 
1R , can be compensated with the 

conditional fare value to have split even time allocations between the passengers. The 

same revelation of Scenario 45 can be said for the Scenario 49. The conditional fare value 

of Passenger One, 1I , in Scenario 49 is $275 to compensate for a much smaller hail rate 

of Passenger One, 1R , equal to once every four to nine hours, competing for the taxi time 

against Passenger Two with a large hail rate and small conditional fare value. The 

examination of Scenarios 51 and 52 reveals all the taxi time should be spent on Passenger 

One with a smaller probability of Passenger One hail rate, 1R , than in Scenarios 42 and 

43. Again the algorithms recommend all the taxi time to be spent on the higher 

conditional fare value passenger, Passenger One, regardless of the probability of the taxi 

being hailed by that passenger. This is due to the small Pr(Passenger One is picked up)  

being more than sufficiently compensated by the conditional fare value of Passenger One, 

1I , if it is $10,000 or more. Again illustrating the importance of considering all factors, 

hail rates and conditional fare values, to maximize the expected optimal total fare 

gathered. Chapter V discusses conclusions and suggests further areas for investigation. 
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V. SUMMARY OF FINDINGS AND AVENUES FOR FURTHER 

RESEARCH 

This thesis proves that a complex relationship between the hail rates of both 

passengers, 1R  and 2R , and the conditional fare values of both passengers, 1I  and 2I , 

contribute to the dimensions that are necessary to find the expected optimum time of the 

taxi. Furthermore, it was shown that this ability does not rely on knowing parameters, 

such as the average rate of passengers hailing taxi, to any great precision. Allocating taxi 

time according to the expected optimum time of both passengers, 1( )E T  and 2( )E T , 

using numerical analysis and Monte Carlo simulation to the taxi scenario means the total 

fare gathered in the assumed one hour of availability is maximized. This was proven to be 

true in Chapter IV. However, there are still unexplored avenues to consider. Unexplored 

considerations to be investigated include considering the conditional fare values as 

random variables in the same fashion as the rates or finding the optimum allocation time 

for more than two tasks during the assumed available time of the taxi. 

A. CONCLUSION 

The examination of scenarios 36, 42, 43, 45, 49, 51, and 52 were insightful. 

Scenario 36 proved that taxi time allocated to Passenger Two was necessary to maximum 

the overall gathered fare values despite all the circumstances being larger in the 

Passenger One parameters. For Scenarios 42 and 43 the optimum solution was shown to 

be to assign all of the taxi time to pursue Passenger One. Scenarios 42 and 43 indicate 

that the conditional fare value is also important but that the hail rate is just as important to 

optimize the use of the taxi. For Scenarios 45 and 49 the complex relationship between 

hail rates and conditional fare values were apparent as the time allocation was balanced 

between the passengers. The examination of Scenarios 51 and 52 reveals all the taxi time 

should be spent on Passenger One. These circumstances are an example of when the 

conditional fare value over compensates for the small probabilities of successfully 

picking up the passenger. 
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The numerical analysis and Monte Carlo simulation results can be applied to 

important national assets. Appendix A presents such a case. The appendix is classified 

TOP SECRET. To obtain a copy of this classified appendix, please contact the Naval 

Postgraduate School’s Dudley Knox Library. 

B. FURTHER RESEARCH 

Further research areas include considering the conditional fare values, 1I  and 2I , 

as random variables; add another task to be accomplished during the assumed available 

time and choose PDFs for the rates that match more closely observed variations A last 

option to further research is to apply this thesis to actual practice. 

An area to research would be to consider the conditional fare values, 1I  and 2I , as 

random variables along with the distributed hail rates, 1R  and 2R . This must be done to 

ensure that these methods are of values when the conditional fare values are not known 

precisely, which is likely the realistic case. Fortunately, the concepts used in this thesis, 

to show that these methods are of value when the hail rates are not known precisely, can 

be applied directly to this problem. 

Another avenue of study could be to include three or more tasks with independent 

uniformly distributed random variables for the rates and  constants for the conditional 

fare values. This would involve slight modifications to the equations of numerical 

analysis and Monte Carlo simulation to find the expected optimum time allocation for 

each task and could extend the findings. 

Another area for further research is to improve upon the accuracy of the PDFs for 

the independent uniformly distributed random variable rates used in numerical analysis. 

Using historical data should yield the appropriately estimated PDFs. 

The final recommendation for further research is to put this model into actual 

practice and run an analysis on the amount of total fare gathered. The transition to 

practice may indicate that improvements are needed to the theory or mathematical 

considerations that were not initially considered and thus furthering the applicability of 

this model. 
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APPENDIX A. CLASSIFIED CHAPTER 

Classified TOP SECRET. Contact Naval Postgraduate School’s Dudley Knox 

Library.  
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APPENDIX B. EQUATION (1.1) AND (1.2) DERIVATION 

This appendix illustrates how Equations (1.1)and (1.2) are derived [9].  

Let I  represent the total expected fare for a taxi that attempts to collect two fares, 

from Passenger One and Passenger Two. 1I  and 2I  are the fares that will be collected 

from Passengers One and Two assuming the taxi picks them up. These fares, are 

conditioned on the fact that the passengers are picked up, are called the conditional fares. 

The expected fare collected from passenger one is  

 1

1

E(fare from Passenger One)

Pr(Passenger One is picked up) 0Pr(Passenger One is not picked up)

= Pr(Passenger One is picked up).

I

I

   (B.1) 

The number of passengers, N , serviced in a fixed amount of time can be 

considered a count of random events, and therefore is modeled as a Poisson random 

variable. A Poisson random variable has probability mass function 

 
1 1( )( ) exp

Pr( ) for 0,1,2,
!

R TnRT
N n n

n



    (B.2) 

where R  is the average rate of passengers picked up and time T  is the time spent 

looking for passengers. Therefore, the probability of no passengers being picked up in 

time T  is Pr( 0) exp( )N RT   . Therefore, the probability that one or more passengers 

are picked up is 

 1 1( )Pr( 0) 1 Pr( 0) 1 exp R TN N       . (B.3) 

Passenger One is the first passenger, so he/she is picked up if 0N  , i.e., 

 1 1( )Pr(Passenger One is picked up) Pr( 0) 1 exp R TN      (B.4) 

where 1R  is the average rate of Passenger One being picked up and time 1T  is the time 

spent looking for Passenger One. In our case, the fare is earned for the first passenger and 

no fare is earned for the others, so, using Equations (B.1) and (B.4), the expected fare 

from Passenger One is 

 1 1( )

1E(fare from Passenger One) [1 exp ]R TI   . (B.5) 

Similarly, the expected fare from Passenger Two is 
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 2 2(

2

)E(fare from Passenger Two) [1 exp ]R TI    (B.6) 

where 2R  is the average rate of Passenger Two being picked up and time 2T  is the time 

spent pursuing Passenger Two. If the total time spent looking for both Passengers One 

and Two is 1 2totalT T T  , then Equation (B.6) can be written in terms of 1T , i.e., 

 

 
  2 1(

2

)
E(fare from Passenger Two) 1 exp totalR T T

I
 

  . (B.7) 

Therefore, using Equations (B.5) and (B.7), the total expected fare during time totalT is  

 2 11 1 [ ( )]( )

1 2E(total fare collected) [1 exp ] 1 exp[ ]totalR T TR TI I
     .                       (B.8) 

In order to maximize his/her expected total fare collected, the smart taxi driver 

will choose the time to spend looking for Passenger One, 1T , and the time to spend 

looking for Passenger Two, 2 1totalT T T  , such that the derivative of Equation (B.8) with 

respect to 1T  at that value of 1T  is zero, provided there exists a 1T  between zero and totalT  

that makes the derivative of Equation (B.8) equal to zero. Let the value of 1T  that 

maximizes Equation (B.8) be denoted by *

1T . The taxi driver will maximize his expected 

total fare collected subject to the constraint 10 totalT T   if the time he spends looking for 

Passenger One is 

 

*

1

* *

1 1 1

*

1

0  if 0

 if 0

 if 

total

total total

T

T T T T

T T T

 


  
 

. (B.9) 

In the remainder of this appendix, we solve for *

1T , the value of 1T  that maximizes 

Equation (B.8). Differentiating Equation (B.8) with respect to 1T  yields 

 
**

2 11 1 [ ( )]( )

1 1 2 20 totalR T TR TI R e I R e
   . (B.10) 

Solving this equation for *

1T  yields 
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1 1
2

2 2*

1

2 1

ln

( )

total

I R
R T

I R
T

R R

 
 

 


. (B.11) 

Therefore the taxi cab driver will maximize his expected collected fare if (s)he allocates 

his time such that the time he spends looking for passenger one is 1T  as calculated using 

Equations (B.9) and (B.11).  
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APPENDIX C. MATLAB CODE FOR NUMERICAL ANALYSIS 

MATLAB Method I, numerical analysis 

By Crystal Warrene with assistance from Cole Johnson and Frank E. Kragh. 
%% Beginning of Method I code. 

function y = uniformv4(R1, R2, R1min, R1max, R2min, R2max)  
% Everything on the right side is what you are inputting into this 

function, 
% everything on the left(i.e. ‘y’) is what the equation will output. 

H = 1/  ( ... 
(R1max-R1min) ... 
*(R2max-R2min) ... 

); 
% Height (H) represents the height of the volume that two variables (R1 

and 
% R2) with a function make of a two variable PDF. R1 parameters are 

“para” 
% of (1,1) and (1,2). R2 parameters are “para” of (2,1) and (2,2). This  
% equation originates from finding the volume of two variables of a  
% PDF =  1 = Height*(point12-point11)*(point22-point21) 
inside = (R1 < R1max) & (R1 > R1min) & (R2 < R2max) & (R2 > R2min); 

% the above equation creates a matrix that shows only where R1 and 

R2 
% is true 

y = H*inside; 
% This results in a matrix where each entry is 0 or H. 

function [ y ] = theintegrandv5( R1, R2 ) 
%% Time (time constant) 
timespan = 1; %hours 

 [R1min, R1max, R2min, R2max, CIV1, CIV2] = getRateMaxMinv2(); 
 (function [R1min, R1max, R2min, R2max, CIV1, CIV2] = getRateMaxMinv2() 

R1min = 1; 
R1max = 10; 

R2min = 1; 
R2max = 10; 

CIV1 = 100; % CIV = Conditional Intelligence Value 

CIV2 = 100;) 

uniformParameters = [R1min R1max; R2min R2max]; 

time_optimum1 = (   log( ... 
(CIV1*R1)./(CIV2*R2) ... 
) ... 

+ R2*timespan ... 
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)./ ... 
(R1+R2) ; % This is Equation (1.1). 

time_optIsZero = time_optimum1 <= 0; 
time_optIsTimespan = time_optimum1 >= timespan; 
time_optIsZeroOrTimespan = time_optIsZero | time_optIsTimespan; 

% Expected Intelligence Values = EIV = CIV1*(1-exp(-R1*T1)) +  CIV2*(1-

exp(-R2*T2))  

EIV0 = CIV2*(1-exp(-R2*timespan));   % EIV at T1 = 0; 

EIVatTimespan = CIV1*(1-exp(-R1*timespan));   % EIV at T1 = timespan 
EIVatTimespanIsBigger = EIV0 < EIVatTimespan; % which endpoint has 

larger 
%EIV 

time_optimum1(time_optIsZeroOrTimespan) = 

EIVatTimespanIsBigger(time_optIsZeroOrTimespan)*timespan; 

f_R1R2_r1r2 = uniformv4(R1, R2, R1min, R1max, R2min, R2max); 

y = time_optimum1.*f_R1R2_r1r2; 

[R1min, R1max, R2min, R2max, CIV1, CIV2] = getRateMaxMinv2(); 
timespan = 1; 

expectation = quad2d(@theintegrandv5, R1min, R1max, R2min, R2max) 

% expectation represents the average T1 value for Method I. 
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APPENDIX D. MATLAB CODE FOR MONTE CARLO 

SIMULATION 

MATLAB Method II, Monte Carlo Simulation 

By Crystal Warrene with assistance from Cole Johnson and Frank E. Kragh. 
%% Method II is to check the results of Method I 

(TwotargetsMethod1v4FEK.m  
%% + theintegrandv5.m + uniformv4.m) value for the expectation should 

match 
%% the value of T1 in this code. 

                                                                            
% clear 
close all 
clc 
clear all 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  
[R1min, R1max, R2min, R2max, CIV1, CIV2] = getRateMaxMinv2(); 
%% Allows for the variable inputs to be inputted once and ran in both  
%% Methods I and II. 

 (function [R1min, R1max, R2min, R2max, CIV1, CIV2] = getRateMaxMinv2() 

  
R1min = 1; 
R1max = 10; 

  
R2min = 1; 
R2max = 10; 

  
CIV1 = 100; % CIV = Conditional Intelligence Value 
CIV2 = 100;) 

  
%% Number of rolls; K must be a range that is so large that it does not  
%% affect the outcome regardless of value. 
k = 1e6 ;                     

      
     R1 = R1min + (R1max-R1min)*rand(k,1);        
     R2 = R2min + (R2max-R2min)*rand(k,1);       

                                                                            
     timespan = 1;                                                          

  
     time_taken = ... 
         (  (log(CIV1)+log(R1) - log(CIV2)-log(R2))... 
            + R2*timespan ... 
          ) ... 
         ./ (R1+R2); % Equation (1.2) is written differently to ensure 

the  
     % same results are calculated. 

 
    time_takenNotRight = (time_taken <= 0) | (time_taken >= timespan); 
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    % This limits the results of T1 to be between 0 and the given value 

of   
    % timespan. 

  
    TIVatZip = CIV2*(1-exp(-R2*timespan)); 
    TIVatTimespan = CIV1*(1-exp( - R1*timespan ) );   

     
    %%%%%%%%%%%%%%%%%%%%%%%% 
    % Need a section that compares the above two TIVs and chooses 

optimum 
    % time (0 or Timespan) which is the desired answer when time_taken 

is 
    % not right. 

   
    %for eack k, find which endpoint has larger TIV 
    TIVatTimespanIsLarger = TIVatZip < TIVatTimespan; 

  
    %for each k that was not right, let time_taken be that endpoint 
    time_taken(time_takenNotRight) = 

TIVatTimespanIsLarger(time_takenNotRight)*timespan; 

  
    %%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % So run a test for a timetaken-is-not-right-case to look at plot 

of 
    % TIV verses time allocated for task1 
    timespan_graph = [0.0:0.01:timespan]’;    

     
    R1bad = R1(time_takenNotRight); 

     
    R2bad = R2(time_takenNotRight); 
    if ( length(R1bad) > 0 ) 

         
        indexx = randi(length(R1bad)); 
        x = time_taken(time_takenNotRight); 
        y = x(indexx); 

  
        TIV = CIV1*(1-exp( - R1bad(indexx)*timespan_graph ) ) ... 
            + CIV2*(1-exp(-R2bad(indexx)*(timespan-timespan_graph))); 

  
        TIVAvg = mean(TIV);  
        plot(timespan_graph,TIV) 
        text(.3,TIVAvg,[‘optimum time assignment is ‘ num2str(y)]) 
    else 
        disp([‘All calculated times for task1 are in (0, ‘ 

num2str(timespan) ‘).’]) 
    end 

     
    time_2 = timespan - time_taken; 

  
 % figure(‘Name’,’Histogram of time_taken’) 
 % hist(time_taken,1e3) 
 % title(‘Combined Histogram’) 
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 % figure(‘Name’,’Histogram of time_2’) 
 % hist(time_2,1e3) 
 % title(‘Combined Histogram’) 

  
%% Statistics 

  
disp([‘Stats for T1’]) 
average = mean(time_taken) 

  
disp([‘Stats for T2’]) 
average = mean(time_2) 
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APPENDIX E. PROBABILITY THAT HAIL RATE OF PASSENGER 

ONE IS LARGER THAN THE HAIL RATE OF PASSENGER TWO 

In this appendix, the probability used in IV.A.1 is calculated. Specifically, we 

calculate 1 2Pr( )R R  given that 1R  and 2R  are independent uniformly distributed 

random variables with joint probability density function 

 
1 2

2

1 2

1 2

1
 if 1/ 25 /  and 1/ 10 /

( , ) 216

0 otherwise.

R R

hr hr r hr hr r hr
f r r

 
    

  



 (E.1) 

The probability can be calculated as  

 

1

2

2

1

1 2 1 2 1 2

2

Pr( ) ( , )

1
                  ( )

216

R R

r

trape

r

zoid

R R f r r dr dr

hr Area



 

 
  
 


 (E.2) 

where the 
trapezoidArea  is the area of the trapezoid with height (10 per hour minus 1 

per hour)   9 per hour, one base of the trapezoid is (25 per hour minus 1 per hour)   

24 per hour, and the other base of the trapezoid is (25 per hour minus 10 per hour)   

15 per hour. 

 
2

1 9 24 15 175.5

2
trapezoidArea

hr hr hr hr

   
     
    . (E.3) 

Therefore,  

 

2

1 2 2

1 175.5
Pr( ) .8125

216
R R hr

hr

   
    
   



. (E.4) 
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